Quintus has developed routines to ensure a clean atmosphere during the HIP cycle, leading to lower risk of oxidation during processing compared with traditional methods. This technology is new, and will revolutionise clean processing inside the HIP.
Modern HIP equipment from Quintus operates up to 2000⁰C (3632⁰F) and 200MPa (30,000 psi). The parameters chosen are material specific, and often an increased pressure can allow lower temperatures to be use, preserving the material microstructure. Of course the HIP cycle used should not exceed the melting temperature of the material to be treated.
The production series of warm isostatic battery presses are able to deliver pressures up to 600 MPa, while reaching temperatures of 150 degree Celsius (pressure media can be water or oil).
Cold Isostatic Pressing (CIP) entails subjecting components or powder in moulds to extreme isostatic pressure, up to 600 MPa (87,022psi) and at ambient temperature. Common pressure media include water, emulsion or oil and in some cases components my be bagged.
That depends on the cells design for an in-situ (or anode-free) lithium metal anode concept Quintus proposes a densification step of whole pouch cells. This position would fit the isostatic press after stacking and pouching.
Powder subjected to extreme pressure in a mould is compacted into a solid, with a density of up to 95% depending on the material.
Within the aerospace industry the use of high-pressure typically reduce, or even eliminate, the need for labor hand correction and the need for intermediate heat treatments.
In all applications the high-pressure support forming of complex and intricate shapes, at excellent repeatability and part quality.
The flexible diaphragm in the fluid cell press allows most kind of forming in block dies, cavity dies and expansion dies. Shallow/small tools may be mixed with high/large tools in one and the same forming operation. Undercuts, intricate shapes, as well as trimming and cutting may be performed by the fluid cell technology. The fluid cell press provides full pressure all over the tool surface, contrary to the rubber pad process where the pressure drops dramatically in the lower section of for example a block tool.
A failure is typically detected because the cycle time and the pressurization time is extended, causing a small leakage only. At worst, at a major failure, the tray may be filled by oil, but this is extremely unusual. The press will automatically decompress and evacuate the oil in the system to the tank. The operator can then close a manual valve at the main oil tank. A worn-out diaphragm is typically changed within four hours, having all replacement parts at hand.
The life depends on the used tool shapes, but typically in the order of tens of thousands of cycles. For some of the Quintus press models the diaphragm is also repairable, should the diaphragm accidentally be pierced or damaged by an operator error. A diaphragm exchange can be made in a few hours, having all replacement parts at hand.
Quintus is primarily a hardware provider, but do have a very strong application support team, providing training in the Flexform process, including tool design, forming and forming simulation on request.
During HPP the pressure reaches up to 6,000 bar (87,000 psi). At this pressure, products will compress approximately 15% of their volume, meaning that HPP packaging must be waterproof, hermetically sealed, and include materials which are flexible to withstand compressions of at least 15%. For these reasons, different plastic materials have traditionally been a popular choice for HPP since many of these are flexible enough to allow containers to compress without breaking and elastic enough to retake their original shapes after the process. Additionally, several sustainable alternatives can be used with HPP such as rPET, PP, PLA and other biodegradable solutions.
Commonly used packaging and materials for HPP include bottles, cups, pouches, trays, in combination with various types of films or closures. Sealing surfaces for films need to be relatively wide, uniform and preferably flat. Sealability (heat seal strength) is an important element for packaging that is subjected to HPP. Cross-hatched patterns are not suitable as they can allow oxygen
diffusion into the packages that will contribute to oxidative deterioration of products.
Definitely. HPP guarantees food safety and achieves an increased shelf life, while maintaining the optimum attributes of fresh products. In addition, HPP is highly recognized by numerous food safety authorities (FDA, EFSA…). Food safety is achieved by inactivating vegetative pathogens, including bacteria, viruses, molds, yeasts and parasites by applying 400 MPa (4000 bar/58,000 psi) to 600 MPa (6000 bar/87,000 psi), for a few seconds to around 6 minutes.
As a science based technology, HPP is not only fully recognized by global regulatory bodies as an antimicrobial process with superior capabilities for inactivating many food pathogens of concern, but also for slowing down the growth of spoilage bacteria, thereby extending refrigerated shelf life between 2-10 times longer than unprocessed foods. Both these benefits alone can have a significant
impact on the global challenges of food safety and food waste.
Most conventional food processing methods such as heat and/or chemicals have negative effects on health and nutrition. Consumers are demanding high nutritional values in foods, particularly those present in fresh, raw, or minimally processed varieties. HPP does not affect nutritional components in foods largely because it has no effects on covalent bonds so HPP products maintain their vitamins and bioactive compounds.
Manufacturers using HPP eliminate chemical preservatives used to control microbial growth and reduce the frequency of food safety testing, thus satisfying the demand from customers for preservative-free foods, while reducing operational costs, hence delivering higher company values. HPP has thus become the process of choice among non-thermal food processing technologies. The
assurance of inactivating foodborne pathogens, post packaging, provides food and beverage manufacturers the business-critical food safety confidence for protecting their consumers, as well as ensuring that their brands and company reputations remain untarnished.
HPP is commercially used in wide range of foods and beverages such as ready-to-eat deli meats, fruit and dairy based drinks, baby foods, dairy products, pet food, ready meals, ready-to-cook marinated meats and meals, seafood, and wide variety of plant-based products including guacamole, hummus, salsa, ready-to-eat salads, tofu and plant-based protein meat analogues.
Most food and beverages are applicable for HPP technology. However, certain intrinsic and extrinsic factors are important in determining HPP conditions and satisfying regulatory rules and guidelines.
We support the customers throughout the complete HPP development process. From recipes to packaging to designing and providing in-house validation services. Our comprehensive evaluation and support is geared for getting your product in the market quickly.
Over the years we have developed our service level agreements; Quintus care in two main offers.
The base offer gives you support priority, remote tech support, application support (some countries this cannot be offered to), annual f2f trainings and annual maintenance, safety and reliability inspection.
Quintus care full additionally to the base also includes all spare parts for preventative maintenance, as well as covering spare parts if something unexpected happens (with some exceptions).
Being proactive about maintenance with a Quintus care contract keeps your costs planned and secures the best possible uptime for your system.
All our SLA’s contains 3 corner stones
This your choice. Some customers believes that they have a stronger negotiation position if they finalize SLA discussion prior to investment. Some appreciate to get guaranteed uptime also during the warranty period. Others wants to avoid establishing a spare stock and avoid to expend internal organization by signing a SLA early. The warranty in general covers issues during warranty. Preventative maintenance is still needed to start directly and go on also during the warranty period.
We are stocking some parts which, by experience, is used frequently. However, since we are providing customized capital equipment it is not feasible to stock all parts. Also, some parts are becoming obsolete and therefore takes extra time to find a replacement part. Being proactive in planning with parts to preventative maintenance, the lead time is in general less of an issue.
We have established 2 separate support lines, one in US and one in EU. Both can be used, depending on the time.
Cookie | Duration | Description |
---|---|---|
cookielawinfo-checkbox-advertisement | 1 year | Set by the GDPR Cookie Consent plugin, this cookie records the user consent for the cookies in the "Advertisement" category. |
cookielawinfo-checkbox-analytics | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics". |
cookielawinfo-checkbox-functional | 11 months | The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional". |
cookielawinfo-checkbox-necessary | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary". |
cookielawinfo-checkbox-others | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other. |
cookielawinfo-checkbox-performance | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance". |
CookieLawInfoConsent | 1 year | CookieYes sets this cookie to record the default button state of the corresponding category and the status of CCPA. It works only in coordination with the primary cookie. |
elementor | never | The website's WordPress theme uses this cookie. It allows the website owner to implement or change the website's content in real-time. |
viewed_cookie_policy | 11 months | The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data. |
Cookie | Duration | Description |
---|---|---|
_hjAbsoluteSessionInProgress | 30 minutes | Hotjar sets this cookie to detect a user's first pageview session, which is a True/False flag set by the cookie. |
li_gc | 5 months 27 days | Linkedin set this cookie for storing visitor's consent regarding using cookies for non-essential purposes. |
lidc | 1 day | LinkedIn sets the lidc cookie to facilitate data center selection. |
UserMatchHistory | 1 month | LinkedIn sets this cookie for LinkedIn Ads ID syncing. |
wp-wpml_current_language | session | WordPress multilingual plugin sets this cookie to store the current language/language settings. |
Cookie | Duration | Description |
---|---|---|
_uetsid | 1 day | Bing Ads sets this cookie to engage with a user that has previously visited the website. |
_uetvid | 1 year 24 days | Bing Ads sets this cookie to engage with a user that has previously visited the website. |
Cookie | Duration | Description |
---|---|---|
_ga | 1 year 1 month 4 days | Google Analytics sets this cookie to calculate visitor, session and campaign data and track site usage for the site's analytics report. The cookie stores information anonymously and assigns a randomly generated number to recognise unique visitors. |
_ga_* | 1 year 1 month 4 days | Google Analytics sets this cookie to store and count page views. |
_gat_UA-* | 1 minute | Google Analytics sets this cookie for user behaviour tracking. |
_gcl_au | 3 months | Google Tag Manager sets the cookie to experiment advertisement efficiency of websites using their services. |
_gid | 1 day | Google Analytics sets this cookie to store information on how visitors use a website while also creating an analytics report of the website's performance. Some of the collected data includes the number of visitors, their source, and the pages they visit anonymously. |
_hjFirstSeen | 30 minutes | Hotjar sets this cookie to identify a new user’s first session. It stores the true/false value, indicating whether it was the first time Hotjar saw this user. |
_hjSession_* | 30 minutes | Hotjar sets this cookie to ensure data from subsequent visits to the same site is attributed to the same user ID, which persists in the Hotjar User ID, which is unique to that site. |
_hjSessionUser_* | 1 year | Hotjar sets this cookie to ensure data from subsequent visits to the same site is attributed to the same user ID, which persists in the Hotjar User ID, which is unique to that site. |
AnalyticsSyncHistory | 1 month | Linkedin set this cookie to store information about the time a sync took place with the lms_analytics cookie. |
CONSENT | 2 years | YouTube sets this cookie via embedded YouTube videos and registers anonymous statistical data. |
ln_or | 1 day | Linkedin sets this cookie to registers statistical data on users' behaviour on the website for internal analytics. |
pardot | past | The pardot cookie is set while the visitor is logged in as a Pardot user. The cookie indicates an active session and is not used for tracking. |
Cookie | Duration | Description |
---|---|---|
bcookie | 1 year | LinkedIn sets this cookie from LinkedIn share buttons and ad tags to recognize browser IDs. |
bscookie | 1 year | LinkedIn sets this cookie to store performed actions on the website. |
li_sugr | 3 months | LinkedIn sets this cookie to collect user behaviour data to optimise the website and make advertisements on the website more relevant. |
MUID | 1 year 24 days | Bing sets this cookie to recognise unique web browsers visiting Microsoft sites. This cookie is used for advertising, site analytics, and other operations. |
test_cookie | 15 minutes | doubleclick.net sets this cookie to determine if the user's browser supports cookies. |
visitor_id* | 1 year 1 month 4 days | Pardot sets this cookie to store a unique user ID. |
visitor_id*-hash | 1 year 1 month 4 days | Pardot sets this cookie to store a unique user ID. |
VISITOR_INFO1_LIVE | 5 months 27 days | YouTube sets this cookie to measure bandwidth, determining whether the user gets the new or old player interface. |
YSC | session | Youtube sets this cookie to track the views of embedded videos on Youtube pages. |
yt-remote-connected-devices | never | YouTube sets this cookie to store the user's video preferences using embedded YouTube videos. |
yt-remote-device-id | never | YouTube sets this cookie to store the user's video preferences using embedded YouTube videos. |
yt.innertube::nextId | never | YouTube sets this cookie to register a unique ID to store data on what videos from YouTube the user has seen. |
yt.innertube::requests | never | YouTube sets this cookie to register a unique ID to store data on what videos from YouTube the user has seen. |
Cookie | Duration | Description |
---|---|---|
lpv228122 | 30 minutes | Description is currently not available. |
VISITOR_PRIVACY_METADATA | 5 months 27 days | Description is currently not available. |