Material Densification
White paper

Benefits of using HIP for additively manufactured thin-walled, high-performance heat exchangers

Additive manufacturing (AM) of heat exchangers is increasingly popular in aerospace due to its ability to create thin-walled structures with high heat-transfer efficiency. Key materials used include stainless steel, titanium, aluminum, copper, and nickel alloys. However, challenges remain in achieving optimal mechanical properties. Hot Isostatic Pressing (HIP) is an essential post-processing step that addresses these issues by eliminating shrinkage porosity and internal defects, improving fatigue resistance and strength.

Recent advancements in HIP technology now integrate argon gas quenching within the HIP cycle, enabling in-situ solution heat treatment (SHT) and aging during processing. This combined approach enhances productivity, reduces distortion, improves corrosion resistance, and yields a superior surface finish. The whitepaper will explore solutions for various aerospace alloys, with insights from recent trials and studies.

Related links

Share:

Related content

Post-Processing Contributions to Fatigue Variability in L-PBF Ti6Al4V with UW
Tech Talks

Post-processing contributions to fatigue variability in L-PBF Ti6Al4V with the University of Washington

White paper

Reducing fatigue failure in titanium alloys: Opportunities for HIP in aerospace and medical AM

White paper

The role of HIP for investment casting aerospace industry

White paper

HIP: The key to high-performance ceramic medical implants

Brochure

Advanced HIP technology for the medical industry

Webinar The Production of High-Performance Heat Exchangers for Aerospace Applications
Webinar

The production of high-performance heat exchangers for aerospace applications

Need help choosing the right press for your business?

Do not hesitate to contact us. We are always ready to answer your questions.