Material Densification
Technical Publication

Effects of the solution and first aging treatment applied to as-built and post-HIP CM247 produced via laser powder bed fusion (LPBF)

This work focuses on the production of CM247LC, a low weldable Ni-Based alloy, using selective laser melting (SLM). Despite initial process parameter optimization, the low defect volume fraction did not meet manufacturing standards, primarily due to the high γ’ volume fraction affecting weldability. However, a crack-free condition was achieved through a γ’-sub-solvus Hot Isostatic Pressing Cycle (HIP), reducing defects to 0.04% and stabilizing the microstructure. Further optimization of the microstructure is needed post-HIP. The paper discusses a new heat treatment recipe to enhance creep and high-temperature fatigue resistance by promoting ordered cuboidal primary γ’ precipitation. This treatment also significantly alters the crystalline structures, leading to grain coarsening and the formation of equiaxial grains.

Share:

Related content

Webinar The Production of High-Performance Heat Exchangers for Aerospace Applications
Webinar

The production of high-performance heat exchangers for aerospace applications

Leveraging HIP as a Productivity Tool for AM Metallic Components
Webinar

Leveraging HIP as a Productivity Tool for AM Metallic Components

Shaping the future of the HIP industry
Brochure

Shaping the future of the HIP industry

White paper

Sustainable production potential of aero engine components in alloy 718 with Flexform™

White paper

Transforming heavy manufacturing with large-scale PM-HIP

PM-AM cylinder demo part
Customer Stories

Paragon Medical elevates their medical device AM manufacturing with Quintus® Care and Quintus Purus®

Need help choosing the right press for your business?

Do not hesitate to contact us. We are always ready to answer your questions.