Material Densification
White paper

Phase Transformation under Isostatic Pressure in HIP

The new HIP cooling systems enable very fast cooling rates under isostatic pressure. This does not only enable shorter HIP cycles but also allows complete heat treatment cycles to be performed in one HIP cycle. It has been shown in previous studies that extreme pressures of several thousand bar can push phase transformation towards longer times.
Phase Transformation under Isostatic Pressure in HIP

The new URQ HIP cooling systems give the opportunity to investigate the impact of pressures up to 2000 bar on phase transformation time dependency. For each of the two materials in this study, a comparison of austenite phase transformation time at 100 bar and 1700 bar was performed. The study was performed by isothermal heat treatment of specimens for a specific time followed by quenching. To evaluate the influence of pressure on hardenability, the phase fractions were evaluated using grid method on SEM images. The study found significant influence of HIP pressure on hardenability.

Related links

Share:

Related content

Isostatic pression solutions for scalable, cost-effective solid-state battery (SSB) production
White paper

Throughput and cost analysis of solid-state battery production

Brochure

QIH 200 URC® – the largest HIP with full HPHT™ capability

White paper

Benefits of using HIP for additively manufactured thin-walled, high-performance heat exchangers

Jim Shipley from Quintus Technologies and Magnus Bergman from VBN Componets
Tech Talks

Wear-resistant AM Components with VBN Components

Webinar

HIP for free: Speed printing unleashed

White paper

HIP for free: Speed printing unleashed

This site is registered on wpml.org as a development site. Switch to a production site key to remove this banner.