Material Densification
Technical Publication

Optimizing HIP and printing parameters for EBM Ti-6Al-4V

The study explores HIP parameters for EBM Ti-6Al-4V to maximize material strength. Optimal conditions include a lower HIP temperature of 800°C and a higher pressure of 200 MPa, effectively eliminating internal defects while achieving the highest strength. Intentionally inducing porosity during printing, along with an optimized HIP cycle, further enhances material strength.

Share:

Related content

White paper

HIP: The key to high-performance ceramic medical implants

Brochure

Advanced HIP technology for the medical industry

Webinar The Production of High-Performance Heat Exchangers for Aerospace Applications
Webinar

The production of high-performance heat exchangers for aerospace applications

Leveraging HIP as a Productivity Tool for AM Metallic Components
Webinar

Leveraging HIP as a Productivity Tool for AM Metallic Components

Shaping the future of the HIP industry
Brochure

Shaping the future of the HIP industry

White paper

Transforming heavy manufacturing with large-scale PM-HIP

Need help choosing the right press for your business?

Do not hesitate to contact us. We are always ready to answer your questions.