Material Densification
White paper

Optimizing HIP and printing parameters for EBM Ti-6Al-4V

An investigation of HIP parameters for EBM Ti-6Al-4V has been performed by Arcam AB and Quintus Technologies AB with the aim to maximize the strength of the HIP:ed material.
Optimizing HIP and printing parameters for EBM Ti-6Al-4V

A lower HIP temperature of 800 °C and a higher pressure of 200 MPa gives the highest strength and is also enough to eliminate all internal defects. By printing material with intentionally induced porosity combined with an optimized HIP cycle the highest strength can be obtained.

Share:

Related content

Post-Processing Contributions to Fatigue Variability in L-PBF Ti6Al4V with UW
Tech Talks

Post-processing contributions to fatigue variability in L-PBF Ti6Al4V with the University of Washington

White paper

Reducing fatigue failure in titanium alloys: Opportunities for HIP in aerospace and medical AM

White paper

The role of HIP for investment casting aerospace industry

White paper

HIP: The key to high-performance ceramic medical implants

Brochure

Advanced HIP technology for the medical industry

Webinar The Production of High-Performance Heat Exchangers for Aerospace Applications
Webinar

The production of high-performance heat exchangers for aerospace applications

Need help choosing the right press for your business?

Do not hesitate to contact us. We are always ready to answer your questions.