The article discusses the challenges in manufacturing titanium aluminides (TiAls) parts due to their low ductility and fracture toughness, despite their potential applications in high-temperature environments like aerospace and automotive industries. Traditional methods such as casting and forging have been prevalent, but there’s growing interest in additive manufacturing (AM) processes like direct energy deposition (DED), electron beam additive manufacturing (EBAM), and laser powder bed fusion (L-PBF) for TiAl production.
Recent studies show promise for these AM methods in industrial TiAl processing. The article reviews the advantages, progress, challenges, and potential solutions in using AM technologies for TiAls, emphasizing the process-structure-property relationships and highlighting L-PBF as a promising method for manufacturing various TiAl alloys. It concludes with suggestions for future research directions